

 Handout:
Easily Instrumenting Android
Applications for Security
Purposes

 Eric Bodden (eric.bodden@cased.de)

Steven Arzt (steven.arzt@cased.de)
Siegfried Rasthofer (siegfried.rasthofer@cased.de)

Eric Bodden, Steven Arzt and Siegfried Rasthofer 1

1. Installing VirtualBox

Go to: https://www.virtualbox.org/wiki/Downloads
 Download latest VirtualBox for your system
 Download latest VirtualBox Extension Pack

• Install VirtualBox 4.2.16 or later
• Install VirtualBox 4.2.16 or later Extension Pack

2. Getting Started with the VM

• Login:
o User: rv2013
o Password: rv2013

• Soot and abc path: /opt/soot
• Android SDK path: /opt/android-sdk-linux
• RV sample app path: ~/RV2013Examples/exampleApp

• Our VM uses the German keyboard layout:

3. Lab-Sessions:

Lab 1: Exploring and installing SMS Messenger app

• Open the RV2013 app in Eclipse
o It should already be in your workspace

• Install it on the emulator
• Play around with it and look for Logcat outputs in Eclips

• Tip: Use Eclipse to install app or use “adb install RV2013.apk”
• Tip: If you need to remove the app: “adb uninstall de.ecspride”

Eric Bodden, Steven Arzt and Siegfried Rasthofer 2

Lab 2: Instrument an App using AspectJ

• Create an aspect that only allows 3 SMS messages per premium number, but an unlimited
number of messages to normal numbers.

• Tip: Combine the aspects for the two policies.
• Tip: The app files are located under ~/RV2013Examples/exampleApp
• Tip: The aspect files are located under ~/RV2013Examples/aspectsAndTMs
• Copy and modify both the .sh and .aj file
• When invoking the .sh script the signature process will ask for a password. Just use

rv2013

Lab 3: Instrument an App using Tracematches

• Change the tracematch such that it prevents SMS spam instead of just reporting it.

• Tip: Use an “around” advice. You don’t need to call “proceed” since your code is only
called in the alert state.

• Tip: The app files are located under ~/RV2013Examples/exampleApp
• Tip: The tracematch files are located under ~/RV2013Examples/aspectsAndTMs
• Copy and modify both the .sh and .aj file

Lab 4: Analyze a Jimple Method

• Analyze the “reverseMe” method in the “RV2013” class and find out what it does.

• Tip: The original APK file is located under ~/RV2013Examples/RV2013.apk
• Tip: Look at the Jimple files generated by running soot with the output format set to

“jimple”.

Lab 5: Insert a Premium-Rate SMS Check

• Before every call to sendTextMessage, check whether the phone number is a 0900
number. In case of a constant number just remove the statement otherwise skip the call. If
it is not a 0900 number, proceed as normal.

• Tip: The following Jimple code snippets may be useful:

$z0 = virtualinvoke $r3.<java.lang.String: boolean startsWith(java.lang.String)>("0900“)
if $z0 == 0
goto nop

 virtualinvoke $r6.<android.telephony.SmsManager: void sendTextMessage(...)>

nop

